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Left- and Right-Regulating Systems

A Steady-State Analysis of Function and Structure of Simple Feedback Systems

A. A. Verveen
Physiological Laboratory, University of Leiden, Leiden, The Netherlands

Abstract. Two aspects of real systems — unidirectional
corrector activity and non-negative signals — are
analysed with regard to the steady state function and
structure of negative feedback systems. Two classes of
simple systems are distinguished: left-regulating systems
(LRS) correcting decreases of the regulated variable, and
right-regulating systems (RRS) acting against increases.
The RRS-comparator differs in structure from the
(classical) LRS-comparator: the signs of its inputs are
reversed and the feedback path is positive. Opening the
feedback path — which leads to maximal activity of a
LRS — switches a RRS off.

Introduction
The classical blueprint for a simple feedback system (Fig.
1) needs further elaboration with regard to the properties
and the limitations of (models for) biological feedback
systems. This is of special importance for
pathophysiology. Many diseases are of a semi-stationary
nature. The level of the regulated variable is and stays
either too high or too low. A detailed "zero order", i.e.
steady state, analysis of the structure and function of
simple feedback systems is, therefore, necessary. In this
paper an analysis is presented of the function and the
structure of systems working either against increases or
against decreases of the regulated variable.

The Classical Diagram
An elaboration of the classical diagram for a simple
negative feedback system is given in Fig. 1. The effects of
multiple elements and of the combination of elements into
lumped elements (cf. Verveen, 1978) are not included,
since it is the basic structure that needs to be treated here.
The diagram explicitly contains the system environment.

We may not neglect the environment in the consideration
of biological systems, since it

a) may control the regulating system (dashed arrows
in Fig. 1),

b) "disturbs" the level of the regulated variable
(influences xd, i in Fig. 1),

c) determines the behaviour of the organism, which
depends upon the state of the regulated variable: it
functions within the organism.

For biological feedback systems these aspects always
have to be kept in mind. A pathological decrease of body
temperature, for example (which occurs during long-term
overload, such as "freezing" to death in a cold winter),
reduces the maximal heat output of the corrector. A
vicious cycle ensues and the organism may die as a result.

Input Variables
There are at least two sets of functional input variables
into the system.

1. Controlling variables [cf. (13)]:
a) the reference signal xi. It may be generated within

the system environment or in the system itself, where it
may exist as a hidden variable [within lumped elements
such as sensor-reference-comparator elements, Verveen
(1978)].

b) An additional controlling input variable exists in
some feedback systems. Here the sensor gain Kf is
separately controlled (like in the gamma control of muscle
length).

2. "Disturbing" variables xd, i which cause the value of
the output variable (here the regulated variable yr) to
deviate from the ideal state yi . The usage to directly write
a "disturbing" variable input into the regulated system is
disadvantageous. It may have come about by a confusion
with electronic feedback amplifiers, where all variables
are of the same nature.
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Fig. 1. Basic diagram for simple feedback
systems within organisms. Gains K, inde-
pendent variables x, dependent variables
y, indices after the first letter(s) (italics)
of the name, except for the reference
signal xi (symbolizing the ideal state yi),
regulated variable yr, feedback gain
(sensor gain) Kf, error signal ye,  corrector
gain Kc, correction yc, nonregulated state
yn. Dashed arrows: possible external
control of the reference signal and/or
sensor gain

For biological systems (and many technical ones)
one has to consider the following points.

a) The properties of the regulated system with
regard to a given "disturbing" influence have to be
taken into account.

b) One often finds a combination of "disturbing"
influences from different sources.

In thermoregulation, for instance, conduction,
convection and radiation are different mechanisms,
related to different thermal sinks and sources (the
"disturbances" xd, i), while nonregulatory metabolic
heat production forms still another source.

c) The nature of the deviation is unspecified. Is it
the remaining error yre (= yi —  yr), or the pending
deviation (the threat yi —  yn), or does it make no
sense to try to specify the deviation? One may tend
to equate deviation with disturbance, which gives
rise to conceptual problems.

d) The term "disturbance" suggests an unwanted
influence. For many biological systems the presence
of "disturbing" variables is, however, a matter of life
or death. These influences must be there, since their
existence is essential for survival of the organism.

In thermoregulation the effective environmental
temperature is a primary condition: it must lie within
a given range (some tens of degrees around 290 K),
in order for the system to regulate the body
temperature at all. Outside this range the organism
dies, regulation or no regulation. In glucose
homeotasis the glucose level is stabilized for the
organism to use it. Disuse means death.

The Nonregulated Variable yn

For the theoretical analysis of the steady state be-
haviour of simple biological feedback systems, the
problems generated by the collection of
environmental influences upon the regulated system
can be avoided by a simple method: the use of the
nonregulated variable yn as the input variable into
the regulated system. The nonregulated variable yn is

then defined as the end-result of all external
influences upon the regulated system when the
correction yc is not taken into account. The symbol y
(index n for nonregulated) indicates its dependence
upon the collection of independent external
influences xd, i. Hence

yr= yn  ==  f (xd,i)   with i =1, 2, 3...for yc= 0 ,  (1)

where the influence of time is discarded.
In a graphical analysis the first step now becomes

quite easy, since a comparison of the effects of
regulation with the nonregulated state yn starts with
relationship (1): yr= yn, a line with unity slope
through the origin (Fig. 2).

In order to discuss the properties of simple bio-
logical (and technical) systems, the diagram of Fig.
1 represents too high a level of abstraction. Real
systems impose at least two essential restrictions:
one-sided corrector activity and non-negative
signals.

One-Sided Corrector Action

A single corrector organ works into one direction
only. It either increases the level of the regulated
variable (a heat-producing corrector, such as a stove)
or it decreases it (by a corrector which takes heat out
of the regulated system, like a correctly mounted air-
conditioner). The first type of corrector works
against decreases of the regulated state yr,  the
second acts against increases only. For both
corrector types the regulated state yr is given by

yr = yn + yc , (2)

where the sign of the correction yc depends upon the
type of corrector. The differences in properties be-
tween the two kinds of correctors lead to different
regulation characteristics in plots of the regulated
variable yr  against the nonregulated variable yn
(Fig. 2).

def
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Fig. 2. Piece-wise linearized steady state characteristics. LRS: left-regulating system, RRS: right-regulating system. Remaining error
yre , maximal correction yc , max , unmarked arrows: yr = yn + ye ,max . For other symbols: see Fig. 1; see text for explanation

Regulation Characteristics:
Underload, Regulation, and Overload

For a feedback system with a corrector working
against decreases of the regulated state yr the
correction yc is positive (upward pointing arrow in
Fig. 2: LRS). Correction occurs, however, when and
only when the regulated state yr drops below a
certain value, the ideal state yi.  Above this value no
correction takes place and

yr = yn for yn ≥ yi . (3)
The system is not switched off, since correction
comes into play as soon as yr drops below yi , it
senses yr all the time, whether it corrects or not. This
situation is the opposite of overload. To describe it a
new term need to be coined, which can not be
misunderstood. Hence the name underload for the
situation in which no correction is possible.

Saturation of corrective action (in which the
correction is maximal: yc,-max with index c,-max from
maximal correction) occurs in the states of overload,
where yn falls below a value yn, max:

yr = yn + yc, max      for yn ≤ yn, max . (4)

Note that these descriptions are piece-wise
linearized, for non-linearities in real systems create
rounded corners.

In between the two corners (the critical points yi ,
yi and yn, max + yc, max , yn, max) lies the working range
where the system regulates (for yn also called the
"range of proportionality"). Here both the correction
yc and the remaining error yre increase proportional
to the deviation of yn from yi towards the left.

For feedback systems with a corrector working
against raised levels of yr (downward pointing arrow

yc in Fig. 2: RRS) correction yc only occurs when the
regulated state rises above the ideal state yi . Here

   yn for yn ≤ yi

yr =    yn + yc for yi ≤ yn ≤ yn, max (5)
          yn + yc, max for yn, max ≤ yn ,

where yc and yc, max are negative. For this kind of
system the ranges of overload and underload are
reversed with respect to the former type [(2)–(4) and
Fig. 2].

Left- and Right-Regulating Systems

The line yr= yn divides the yr, yn -plane into two seg-
ments (Fig. 2). The characteristic for the feedback
system regulating against decreases lies completely
within the left segment, while the right segment
contains the relationship for a system correcting
increases of the regulated variable. This property nicely
enables the classification of the two types of feedback
systems. Simple feedback systems which correct
decreases of the regulated state will be named left-
regulating systems (abbreviated to LRS), while those
that counteract increases are, hence, called right-
regulating systems (RRS). With the use of these terms
we avoid:

a) ambiguity, since terms related to the behaviour
of the regulated variable (such as "decrease", "loss",
"down" or "negative") may be thought to apply to the
opposite behaviour of the corrective action and vice
versa,

b) confusion, for a term like "downward regulation"
is used for the decrease in cell membrane receptors
upon prolonged exposure to a raised concentration of
their ligands: the term "positive regulation" is in use for
the opposite effect (cf. Catt et al., 1979).
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An additional advantage is, that they do not suggest
unrelated usage and are grasped quickly from the steady
state graphs. Comparator behaviour also falls within these
terms (Fig. 4).

Basic Equation: Graphical Derivation

Within the working range (Fig. 2) the remaining error yre
is equal to the difference between the ideal state yi and the
regulated state yr:

yre =  yi – yr . (6)
The size of the correction is equal to the difference
between the regulated state yr and the nonregulated state
yn :

yc = yr – yn . (7)
For a LRS yre and yc are positive, while they are
negative for a RRS. This follows from (6) and (7)
and accounts for the convention used in (2) and (5).
Both increase proportional to the pending deviation
from the ideal state [yi, which can be read from the
graphs (after linearization) as the critical point upon
the yr = yn line] (Fig. 2). The quotient of yc and yre is
by definition the (open loop) gain K:

K ==   ——

The expression for the regulated state yr follows after
insertio f (6) and into (8) and rearrangement:

 yr  ==   — —  yi  +   — —  yn (9)

Note that (9) applies to both left- and right-regulating
systems. Insertion of (9) into type (5) equations (instead
of yi = yn + yc) includes the whole range of yn and
preserves the differences between LRS and RRS.

Corrector Organ: Block Diagram

For a LRS the effect of corrective action results in an
addition of the correction to the nonregulated state [(2)
and Fig. 3A]. For a RRS the correction amounts to a
subtraction (Fig. 2: RRS and Fig. 3B). With the
mentioned convention: for yc to include its sign (7), Fig.
3C is the result. The corrector type is now specified by the
placement of a negative sign in front of the corrector gain
in a RRS. This also avoids possible confusion between the
mixing point symbol for the regulated system of Fig. 3B
and the comparator symbol. The two diagrams (Fig. 3 B
and C) are, of course, mathematically identical.

Non-Negative Signals
In real systems the signals yf, xi and ye (feedback,
reference and error signal, respectively) are either positive
or zero, since they are modulations of a non-negative
carrier in a one-to-one relationship. Negative signals do
not exist (the possibility of a spontaneously active
element, signaling both negative and positive values of its
inputs, is not considered here). The effect of a signal
hence indicates its sign: one type of signal excites the
following element (plus sign), another inhibits it (minus
sign), both are measured and plotted in terms of non-
negative units.

Fig. 3A–C. Block diagrams of corrector action
and regulated system. A LRS, B and C RRS.
The negative sign within the mixing point in B
has been carried over into the corrector in C
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ig. 4A–C. Output-input relations for comparators. A Abstract comparator, B LRS-comparator, C RRS-comparator. Dashed lines:
onexisting ranges
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For the abstract comparator of Fig. 1 this implies that
the ye vs. yf diagram of Fig. 4A is unrealistic. The
conditions imposed upon our representations are

yf  ≥ 0, xi ≥ 0, and ye ≥ 0 . (10)

In terms of ye, yf ─diagrams the conditions lead to two
kinds of comparators (Fig. 4B and C, piece-wise lin-
earized).

The output of the comparator of Fig. 4B goes down
with yf   (slope — 1):

  xi ─ yf for         0 ≤  yf  ≤  xi

  0                otherwise .

It only signals decreases of the regulated state yr , since
the first expression of (11) is equal to

ye =  xi ─  Kf yr .

This comparator, therefore, forms part of a LRS. Note that
its working range lies to the left of the point
yf = xi .

The other type of comparator (Fig. 4C) has a threshold
at yf = xi , from where the (linearized) line rises with slope
plus one:

  yf ─ xi for         yf  ≥  xi

  0                otherwise .

This one only works against increases of the regulated
variable:

 ye = Kf yr ─   xi

and is, therefore, the comparator element of a RRS
working range lies at the right side of the point yf =
Note that the terms "left-" and "right-regulation" 
apply to the actions of the comparators.

The corresponding block diagrams for these c
parators, following from the restriction to positive sign
are given in Fig. 5. The LRS-comparator is pictori
identical with the abstract comparator of Fig. 1, while
RRS-comparator has the signs of its inputs reversed.

Complete Block Diagrams

The results from the analyses of corrector action a
of comparator action (Figs. 3A and 5A; Figs. 3C a

Fig. 5A and B. Block diagrams for the comparator elements of a
LRS (A) and a RRS (B)

5B) can now be assembled into the complete diagrams for
a LRS and a RRS (Fig. 6). Calculation of the regulated
variable yr from both diagrams results into (9), with the
ideal state

yi =   ——

and the (open loop) gain

K = Kf Kc.

A LRS has the classical structure, but for a RRS the
feedback signal yf excites the comparator, while the
reference signal xi inhibits it. Although the feedback as
such is positive indeed, the system is not a positive

ye =

(

(13)

(14)

(11)⎧
⎨
⎩

ye = (11)

⎧
⎨
⎩

ye =

xi
Kf
12)
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 xi.

also

om-
als,
ally
 the

nd
nd

feedback system. This is directly visible when the
negative sign for the gain Kc is carried over into the
comparator. The diagram of Fig. 6B then changes into
that of  Fig. 1.

Implications

The differences in structure and function of left- and
right-regulating systems are essential and clear our insight
into their behaviour in health and disease.

1. The nature of the action of the feedback signal
(negative or positive feedback) does not enable us to
classify the corresponding system into a negative or
positive feedback system. The whole system has to be
taken into account. The isolated terms "negative feed-
back" and "positive feedback" do not convey any
information whatsoever; unless they are restricted either
to the actual structure of the feedback path, or to effector
action, which is quite confusing.

Fig. 6. Block diagrams for a
LRS and a RRS
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2. The practice to diagram negative feedback systems
according to the blueprint of Fig. 1 carries the danger of
neglect of the structure and properties of right-regulating
systems.

3. One phenomenon (opening the feedback path)
serves to illustrate a difference in behaviour. From Fig. 1
follows that such a situation leads to

yr = Kc  xi (15)

which cannot occur. For a LRS the corrector saturates and

yr = yn + yc, max . (16)

The system is and stays maximally active. Damage results
from the increased level and, especially, from the
continuous expenditure of energy, which leads to exhau-
stion.

For a RRS the situation is different, since it ceases
corrector action. Here

yr = yn (17)

and the system is switched of. A biological application of
this property of right-regulating systems is found in
gamma control of muscle length. The sensors are “set” by
gamma neuron activity. During sleep (and sometimes

during strong emotions) gamma neuron activity ceases,
sensor activity disappears (Kf = 0) and the muscles
slacken: the system has been switched off via the
feedback. This sometimes happens via an intial gamma
control of muscle length overshoot (the jolt before one
falls asleep). Others experience a differential awakening
at night. They are paralysed for a few moments, unable to
move their limbs since the system for the regulation of
muscle length is still switched off.

Note added in proof: For a RRS the error signal is positive. It excites (actuates) the corrector. The steady state effect of corrector action is described by a negative sign placed
before its gain.

References

Catt, K.J., Harwood, J.P., Aguilera, G., Dufau, M.L.: Hormonal
regulation of peptide receptors and target cell responses. Nature 280,
109-116 (1979)

Verveen, A.A.: Silent endocrine tumors, a steady-state analysis of the
effects of changes in cell number for biological feedback systems.
Biol. Cybernetics 31,49-54 (1978)

Received: July 24,1979

A.A. Verveen  Physiological
Laboratory University of
Leiden Wassenaarseweg 62
NL- 2300 RC Leiden
The Netherlands

Reproduced by A.A. Verveen with an optical character recognition program.
Layout and spelling may, hence, differ from that of the printed text.

The contents are, however, equal to the original and may not be changed.
See my signature below.

Verveen, A.A. 1979. Left- and right-regulating systems.
A steady-state analysis of function and structure of simple feedback systems

Biol. Cybernetics 35, 131-136.


	Title
	Abstract
	Introduction and classical diagram
	Explanation
	Classical diagram

	Role of the environment
	Input variables
	The non-regulated variable
	One-sided corrector action
	Regulation characteristics and corrector action
	Left- and right-regulation
	Graphs of regulation characteristics
	Derivation of the basic equation
	Corrector action
	Block diagrams for corrector action

	Consequence of the physical nature of the signals
	Comparator elements
	Block diagrams for comparator elements
	Input-output relations for comparators

	Complete block diagram
	Implications
	References

	Comment and signature

		2006-09-07T16:55:23+0200
	Lisse, the Netherlands
	A.A. Verveen
	I am the author of this document




